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RNA interference offers the potential of a novel therapeutic approach for treating skin disorders. To this end, we
investigated delivery of nucleic acids, including a plasmid expressing the reporter gene luciferase, to mouse
skin by intradermal injection into footpads using in vivo bioluminescence imaging over multiple time points. In
order to evaluate the ability of RNA interference to inhibit skin gene expression, reporter gene constructs were
co-injected with specific or non-specific siRNAs and the in vivo effects measured. Our results revealed that
specific unmodified and modified siRNAs (but not nonspecific matched controls) strongly inhibit reporter gene
expression in mice. These results indicate that small interfering RNA, delivered locally as RNA directly or
expressed from viral or non-viral vectors, may be effective agents for treating skin disorders.
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INTRODUCTION
Diseases of the skin with defined molecular targets are
amenable to nucleic acid-based therapies due to tissue
accessibility (Pfutzner and Vogel, 2000; Khavari et al., 2002).
Although normal skin (especially the stratum corneum)
represents a formidable barrier to topical nucleic acid
delivery, a number of methods have been used to deliver
nucleic acids to skin (Hengge et al., 1996; Vogel, 1999,
2000; Yu et al., 1999; Mitragotri, 2000; Wraight and White,
2001; Khavari et al., 2002; Raghavachari and Fahl, 2002;
Prud’homme et al., 2006). The availability of specific and
potent gene inhibitors coupled with efficient localized
delivery would be a boon to patients suffering from
monogenic skin disorders such as epidermolysis bullosa
and pachyonychia congenita (PC).

RNA interference is an evolutionarily conserved mechan-
ism that results in specific gene inhibition. The recent
discovery that small interfering RNAs (siRNAs) can effectively

silence gene expression in a number of mammalian systems
without inducing an immune response has resulted in an
intense effort to develop these inhibitors as disease ther-
apeutics (Dykxhoorn and Lieberman, 2005; Shankar et al.,
2005). In this study, we utilize in vivo bioluminescence
imaging to reveal the spatiotemporal inhibition patterns of
gene expression that are mediated by siRNAs targeting
reporter genes expressed in mouse skin keratinocytes. The
noninvasive analyses of gene expression afforded by this
approach allows for the repeated monitoring of reporter gene
expression over multiple time points in the same group of
animals, minimizing the number of mice needed while
refining the data sets and maximizing the amount of
information obtained (McCaffrey et al., 2002). These studies
suggest that siRNAs developed against molecular targets in
the skin may be effectively developed as therapeutics,
especially for monogenic autosomal dominant skin disorders.

The work presented here is part of a larger effort aimed at
developing siRNAs as novel therapeutics for skin disorders.
The preclinical steps required for development of therapeutic
siRNAs include: (i) identification of a specific and potent
siRNA molecule that is active in vivo; (ii) development of a
practical delivery system in which the siRNA is stable and
active; (iii) identification of a specific siRNA that reverses a
disease phenotype in an appropriate animal model, and (iv)
demonstration of a lack of serious toxicity when siRNA is
delivered at high concentrations in animals. Our initial efforts
reported herein indicate that potent and specific enhanced
green fluorescent protein (eGFP) siRNAs can be designed that
are effective in mouse skin when co-delivered via intradermal
injection with a bicistronic firefly luciferase (fLuc)/eGFP
target. The use of the bicistronic reporter allows detection of
both fLuc (easily quantitated but difficult to determine effects
in individual cells) and eGFP (readily allows determination of
transfection efficiency as well as siRNA effects on individual
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cells). The eGFP siRNAs block expression of both fLuc and
eGFP, due to degradation of the entire bicistronic mRNA.
A single treatment of siRNA effectively blocks reporter gene
expression for at least 5 days (transient reporter expression
diminishes rapidly after peaking between one and two days),
suggesting siRNA effects are long-lasting in the skin.
Co-delivery of siRNA with target allows rapid determination
of the ability of the siRNAs to silence target gene expression
while minimizing complicating delivery issues. These studies
will be extended to show that these same eGFP inhibitors can
be used to inhibit pre-existing gene expression in transgenic
mice expressing the same fLuc/eGFP bicistronic reporter
system described in this paper, using various delivery
technologies including intradermal injection of siRNAs.

RESULTS
Dose response and time-course analyses of reporter gene
expression in mouse skin
Balb/c mouse footpads were intradermally injected with a
reporter gene plasmid (pL2G; Figure 1a) encoding a
bicistronic mRNA comprised of the fLuc and eGFP open
reading frames separated by the foot and mouth disease virus
(FMDV) 2A oligopeptide sequence to facilitate expression of
equal amounts of fLuc and eGFP (Donnelly et al., 2001; Cao
et al., 2005; de Felipe et al., 2006). The mice were imaged for
fLuc expression at 12, 24, 36, 48, 96, and 400hours post gene
transfer. The 24-hour time point is shown in Figure 1b. Peak
expression was observed between 24 and 48hours, with 1–2mg
of injected expression plasmid (data not shown;
see also Figure 4b, pUC19 data set). Mouse footpad skin was

chosen over other mouse skin in part due its greater thickness, the
absence of hair follicles, ease of access, and relevance to certain
skin diseases. Comparable results were observed following
intradermal injection into mouse back skin (data not shown).

To determine the cell type and percentage of cells
expressing reporter gene following intradermal injection, a
b-galactosidase (b-gal) expression vector was introduced into
mouse footpads (Figure 2). eGFP expression from pL2G was
not readily detectable in mouse footpads, presumably due to
low expression and high autofluorescence of the skin (data
not shown). Following an incubation period of 36 hours, the
footpad was removed, stained for b-gal activity (panel a), and
sectioned and stained for microscopic analysis (panels b and
c). Figure 2c shows that B20% of epidermal keratinocytes
within 2–3mm of the injection site express b-gal at the higher
(20 mg) plasmid dose. No non-keratinocyte LacZ-positive
cells were observed. These results are consistent with
previous studies showing that intradermally injected DNA
diffuses into the epidermis and is expressed by keratinocytes
(Hengge et al., 1995, 1996; Sawamura et al., 2002).

Stabilized and unstabilized gene inhibitors block reporter gene
expression in human tissue culture cells and mouse skin
To validate the RNA-based gene inhibitors, correlative cell
culture studies were performed in keratinocytes and other
cells. The pL2G expression plasmid was cotransfected with
eGFP-directed siRNAs, both with and without chemical
modifications (siSTABLE modifications without or with a
cholesterol (chol) derivative on the sense strand (Soutschek
et al., 2004), into both human 293FT embryonic kidney cells
and E6/E7-immortalized human keratinocytes (Figure 3b). An
expression vector encoding secreted alkaline phosphatase
(SEAP) was cotransfected to control for transfection efficiency
and nonspecific effects. No SEAP activity was detected in the
keratinocyte cell line, presumably due to the lower transfec-
tion efficiency of these cells. (The amount of luciferase
expression per cell in the keratinocyte cell line is B3,000-
fold less than the levels observed in the 293 cells; data not
shown.) Figure 3 shows that both unmodified and modified
eGFP inhibitors potently inhibit L2G expression, as measured
by both fLuc activity (Figure 3) and eGFP fluorescence (data
not shown), with an IC50p1 nM for all eGFP siRNAs tested in
the 293FT cells (Figure 3a) and the keratinocyte cell line
(Figure 3b and data not shown). Little or no effect was
observed with the irrelevant nonspecific control (NSC4)
siRNA inhibitors. The decrease at 25 nM for NSC4 siSTABLE
plus cholesterol in Figure 3a was not observed in other
similar experiments (data not shown). To confirm that the
siRNAs were acting by degrading target mRNA, a Northern
blot analysis was performed (Figure 3c). Equal amounts of
total RNA, isolated from cells transfected without (lane 7) or
with pL2G plasmid, alone (lane 1) or with siRNAs (lanes 2–6),
were separated by gel electrophoresis. The separated RNAs
were transferred to a membrane and hybridized to probes
specific for fLuc, SEAP, and translation elongation factor 1A
(EF1A). Both unmodified (lane 2) and modified (lane 4) eGFP
siRNAs specifically inhibited L2G mRNA accumulation
(76% and 79% inhibition, respectively; quantitation by
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Figure 1. Luciferase expression in mouse footpad following intradermal
injection of a reporter plasmid. (a) Schematic representation of the pL2G
expression plasmid (expresses a hybrid fLuc-2A-eGFP mRNA) with target
region of eGFP siRNA inhibitor noted. The bicistronic nature of this reporter is
conferred by the 2A sequence from foot and mouth disease virus (see
Materials and Methods). (b) The pL2G plasmid was injected intradermally into
the footpads of mice at concentrations of 1 mg (right paw) and 2mg (left paw).
Luciferase expression levels were assessed by whole-body bioluminescence
imaging at 12, 24, 36, 48, 96, and 400hours post gene transfer. The
representative image is of a mouse imaged at 24 hours. The pseudocolor
image superimposed over the gray scale reference image represents signal
intensity with red indicating highest signal and purple the lowest.
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phosphorimager) compared to the corresponding NSC4
controls (lanes 3 and 5) when corrected for SEAP and
endogenous EF1A mRNA levels. Little or no inhibition was
observed using an irrelevant (hepatitis C virus) siRNA (lane 6).
pSEAP2 plasmid was included in each of the transfections
(lanes 1–7). No fLuc or SEAP mRNA was detected in
untransfected cells (data not shown).

These positive cell culture results supported the translation
from culture to a murine skin model (Figure 4). Balb/c mouse
footpads were co-injected with the pL2G reporter gene
plasmid and unmodified or modified eGFP or non-specific
(NSC4 or HCV) siRNAs. At the indicated time points, an
intraperitoneal (IP) injection of luciferin was given and the
mice were imaged (Figure 4a) as described in Figure 1.
Substantial mouse-to-mouse variability was observed in all of
the animal experiments, presumably due to variability in the
thickness and elasticity of the skin of the footpads and/or the
difficulty of injecting the nucleic acid at precisely the same
location for each mouse. Nevertheless, compared to the
control paws injected with NSC4 and HCV siRNAs, the paws
injected with each of the eGFP siRNAs showed robust
inhibition of reporter gene expression (Figure 4b; e.g. 94 and
97% inhibition by unmodified and modified eGFP siRNAs as
compared to their matched NSC4 control siRNAs at the
48 hours time point). No significant decrease was observed
using the control HCV siRNA; a slight decrease was observed
using NSC4 control siRNAs, possibly due to the excess of
siRNA to plasmid (2,000-fold more siRNA on a molar basis)

injected into the footpads. These results strongly suggest that
these RNA-based inhibitors can be used to potently inhibit
endogenous gene expression. The observation that unmodi-
fied eGFP siRNAs had similar activity to stabilized ones in
tissue culture cells and co-injection animal experiments
bodes well for obtaining sustained inhibition of endogenous
genes in animal and human studies.

DISCUSSION
RNA interference holds tremendous potential as a powerful
and robust therapeutic strategy for specifically blocking gene
expression. In the present report, we show that siRNAs
specifically block reporter gene expression in mouse kerati-
nocytes under conditions in which delivery is not limiting
(due to co-delivery of siRNA and target plasmids to the same
cells). The strong cytomegalovirus (CMV) promoter utilized
results in transient high reporter mRNA (and protein)
expression, likely at levels comparable to constitutively-
expressed abundant mRNAs such as translation elongation
factor EF1A (see Figure 3c), glyceraldehyde-3-phosphate
dehydrogenase, or endogenous keratins (data not shown).
The results presented here indicate that these RNA-based
inhibitors can be used to potently inhibit the expression of
ectopically expressed genes, suggesting that targeting of
endogenous genes is also feasible. siRNAs containing
modifications for stabilization against nucleases and targeting
to specific cell types (in the case of cholesterol), as well as
unmodified siRNAs, were all effective in blocking gene
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Figure 2. Expression of b-gal in mouse footpad keratinocytes. (a) The b-gal expression plasmid was injected intradermally into a mouse footpad and 36
hours later the mouse was killed and the paw removed and tissues stained for b-gal activity. (b) Footpads that had been injected with 2 mg plasmid were
removed, fixed, sectioned, and stained with hematoxylin and eosin. (c) Footpads that had been injected with 20mg b-gal plasmid were removed, fixed,
sectioned, and stained with hematoxylin and eosin. The micrographs, shown at 100 (b) and 200 (c)-fold magnifications, reveal gene expression in
keratinocytes (arrows).
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expression, indicating that these modifications did not appear
to block activity in these assays. The inhibitory activity of the
siRNAs lasted for the duration of these experiments (5 days)
without noticeable increase (restoration) of reporter gene
expression. The observation that unmodified eGFP siRNAs
had similar activity to stabilized derivatives in cell culture

indicates that modified siRNAs retain potency for sustained
inhibition in animal and human studies.

One of the main unresolved issues of using siRNAs as
therapeutics is efficient delivery to appropriate cells. Mouse
skin keratinocytes can be readily transduced by lentiviral
vectors (Kuhn et al., 2002). However, issues of safety, real or
perceived, have limited acceptance of viral vectors in the
clinic. An in vitro synthesized small hairpin RNA directed
against the same eGFP target site utilized in this study showed
similar activity to the eGFP siRNA inhibitors in cultured human
keratinocytes (data not shown) and could be readily expressed
from a viral (or plasmid) vector if this route of administration
were shown to be safe. We have also shown that small hairpin
RNAs delivered directly to the liver are highly effective at
inhibiting gene expression (Wang et al., 2005).

Skin delivery techniques based on ballistic methods
(Nanney et al., 2000; Oshikawa et al., 2001), injection
(Choate and Khavari, 1997; Baek et al., 2001), ultrasound
and iontophoresis (Mitragotri, 2000), and chemical depila-
tion-induced anagen for hair follicles (Domashenko et al.,
2000) successfully deliver nucleic acids to skin cells. Direct
topical application has also been used with mixed results
(Mehta et al., 2000; Raghavachari and Fahl, 2002; White
et al., 2002; Meykadeh et al., 2005). Several published
reports (and our unpublished data) indicate that electropora-
tion may increase delivery following injection or topical
delivery by as much as 1,000-fold, with little or no tissue
damage by disrupting the membrane structure and increasing
permeability of the stratum corneum, suggesting that electro-
poration may be combined with other methods to increase
delivery (Brand, 2001; Zhang et al., 2002; Denet et al., 2004;
Prud’homme et al., 2006). It should be noted that siRNAs,
due to their smaller size and the site of siRNA activity
(cytoplasm), may be delivered more efficiently compared with
expression plasmids, which require nuclear entry (Herweijer
and Wolff, 2003). Here, direct injection of siRNAs provided
delivery sufficient to inhibit reporter gene expression.
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Figure 3. eGFP siRNAs potently inhibit expression of a luciferase/eGFP
bicistronic mRNA in tissue culture cells. (a) The pL2G expression plasmid
was cotransfected into 293FT cells with secreted alkaline phosphatase
plasmid (SEAP, to control for transfection efficiency and nonspecific effects)
and eGFP- or nonspecific (NSC4) siRNAs that were either unmodified (siRNA)
or chemically stabilized (siSTABLE or siSTABLEþ chol, which contains a
cholesterol derivative at the 50 end of the sense strand). Each pair of eGFP and
NSC4 siRNAs contains the same chemical modifications (e.g. unmodified,
siSTABLE or siSTABLEþ chol). Forty-eight hours following transfection, cells
were lysed and the amount of fLuc activity determined (see Materials and
Methods). (b) Human HPV E6/E7-transformed keratinocytes were
cotransfected with target plasmid and siRNAs and analyzed 72hours later in a
manner similar to 293FT cells (see panel a). (c) Northern blot analysis of
293FT cells cotransfected as in panel a. A 10 mg weight of total RNA, isolated
from cells transfected without (lane 7) or with pL2G, alone (lane 1) or
cotransfected with siRNAs (lanes 2–6), was separated by denaturing gel
electrophoresis, transferred to membrane, and hybridized initially to
radiolabeled fLuc cDNA and subsequently to SEAP and EF1A probes.
The RNA blot was exposed to a phosphorimager screen (see Materials and
Methods). Lanes 2 and 4: unmodified and siSTABLEþ cholesterol eGFP
siRNAs. Lanes 3 and 5: unmodified and siSTABLEþ cholesterol NSC4
siRNAs. Lane 6: hepatitis C virus siRNA.
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The results presented in this study indicate that siRNAs
can robustly inhibit gene expression in murine skin keratino-
cytes. The use of in vivo bioluminescence imaging allows
rapid and repeated quantitation of reporter gene expression in
the skin and assessment of the effects of siRNA inhibitors,
without tissue removal or harm to the animals. Further
experiments are needed to determine the effectiveness of
siRNAs targeting disease-specific gene expression in animal

models and to assess the feasibility of using siRNAs in a
clinical setting.

Autosomal dominant skin disorders resulting from
expression of mutant keratins may be good targets for initial
siRNA therapies. One such disease is PC. This is a rare skin
disorder characterized by thick and dystrophic nails, oral
leukoplakia, and skin defects including palmoplanter hyper-
keratosis with blistering at the pressure points. This disorder
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Figure 4. Inhibition of target gene expression by specific siRNAs in a murine footpad skin model. The pL2G expression plasmid was co-injected with
either specific eGFP (right paw) or irrelevant NSC4 (left paw) siRNAs (unmodified or siSTABLEþ chol), or hepatitis C nonspecific siRNA. Compensatory
pUC19 plasmid DNA was added to the injection to achieve the same amount of nucleic acid delivered to each mouse footpad. At the indicated time points,
luciferase expression in the footpads was determined following IP luciferin injection by imaging as described in Figure 1. (a) Mice were imaged using
the IVIS200 in vivo imaging system (a representative mouse is shown for each inhibitor at the 72 hours time point). Red color represents highest luciferase
expression and purple lowest. (b) Quantitation of luciferase activity in treated mice (three mice per group) was performed using LivingImage software and
demonstrates reduction in signals in paws treated with siRNA (eGFP) specific to the target plasmid (pL2G).
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results from mutations (usually single-nucleotide mutations)
in genes encoding keratin 6a/b, 16, or 17 proteins in
epidermal keratinocytes (Smith, 2003; Leachman et al.,
2005). Efficient delivery of potent and PC disease-specific
siRNAs to the pressure points on the soles may alleviate the
sole blistering and debilitating pain in these patients. These
PC-specific mutant keratins are attractive siRNA targets, as
inhibitor discrimination between mutant and wild-type PC
genes is probably unnecessary due to the compensatory effect
of other keratins. Redundancy and overlapping activities of
keratin proteins have been demonstrated in transgenic and
knockout mouse experiments (Wojcik et al., 2001; Wong and
Coulombe, 2003; Wong et al., 2005). Thus, an effective
treatment may result from inhibition of both the mutant
(perhaps by as little as 50% reduction; (Cao et al., 2001;
Wong et al., 2005)) and wild-type genes with potentially no
deleterious effects due to decreased expression of the wild-
type gene.

MATERIALS AND METHODS
Design of siRNAs
Chemically synthesized siRNAs were generated by Thermo Fisher

Scientific, Dharmacon Products (Lafayette, CO). The SMARTselectedTM

eGFP sequences for the sense and antisense strands are 19þ 2 format

(21-mer), sense 50-GCACCAUCUUCUUCAAGGAUU and antisense 50-

P-UCCUUGAAGAAGAUGGUGCUU. These siRNAs were also synthe-

sized with the siSTABLETM in vivo modification pattern (Watanabe et al.,

2005) to enhance the siRNA’s nuclease resistance. Further, in one set of

the siSTABLETM siRNAs, cholesterol was placed on the 50 sense strand.

The sequences used for the NSC4 (inverted beta galactosidase sequence)

siRNAs are sense 50-UAGCGACUAAACACAUCAAUU and antisense

50-P-UUGAUGUGUUUAGUCGCUAUU. The hepatitis C-specific

siRNA sequences and their utility against a specific target in vivo have

been previously reported (Wang et al., 2005).

Transfections and reporter gene assays
Human 293FT cells (Invitrogen, Carlsbad, CA) were maintained in

DMEM (BioWhittaker, Walkersville, MD) with 10% fetal bovine

serum (HyClone, Logan, UT), supplemented with 2mM L-glutamine

and 1mM sodium pyruvate. HPV16 E6/E7-immortalized keratino-

cytes (Fsk1.T.E6/E7 (Krueger et al., 1999), kindly provided by Gerald

Krueger, University of Utah) were cultured in keratinocyte basal

medium (KBM) basal medium supplemented with KGM SingleQuots

and Growth Factors (CAMBREX/BioWhittaker). The day before

transfection, 293FT cells were seeded at 0.85" 105 cells/well in a

48-well plate (for keratinocytes 0.5" 105 cells/well were used),

resulting in B80% cell confluency at the time of transfection. Cells

were transfected with Lipofectamine 2000 (Invitrogen) following the

manufacturer’s instructions. For the inhibition experiments, 293FT

cells were cotransfected (in triplicate) with 30 ng of a bicistronic

reporter gene plasmid (pL2G) that expresses fLuc and eGFP under

the control of the constitutive and ubiquitously expressed CMV

promoter (Cao et al., 2005), 25 ng pSEAP2-control plasmid (BD

Biosciences Clontech, Mountain View, CA) as a transfection control,

and the indicated amounts of synthetic siRNAs (typical amount,

1 pmole) supplemented with pUC19 to give a final nucleic acid

concentration of 400 ng per transfection. In the pL2G plasmid, the

FMDV 2A sequence is used to create the bicistronic message. This

sequence results in pseudotermination of the polypeptide encoded

in the first open reading frame (fLuc), and then without disengaging

from the mRNA, the second open reading frame (eGFP) is translated

(Donnelly et al., 2001; de Felipe et al., 2006). For the keratinocytes,

125 ng pL2G, the indicated amounts of inhibitors, 125 ng pSEAP,

and sufficient pUC19 to give a final concentration of 400 ng total

nucleic acid were used for each transfection. Forty-eight hours later

(72 hours for the keratinocytes), the supernatant was removed and

heated at 651C for 30minutes (min). A 5–10 ml volume of the

supernatant was added to 150ml of the p-nitrophenyl phosphate

liquid substrate system (pNPP; SIGMA, St Louis, MO). After

30–60minutes of incubation at room temperature, samples were

read (405 nm) on a Thermomax microplate reader (Molecular

Devices, Sunnyvale, CA) and quantitated using SOFTmax

software (Molecular Devices). Due to the low level of transfection,

no SEAP activity was detected in the keratinocytes. The remaining

cells were lysed and luciferase activity measured using the

Dual-Luciferase Reporter assay system (Promega, Madison, WI)

and MicroLumat LB 96 P luminometer (Berthold Technologies, Bad

Wildbad, Germany).

RNA isolation and Northern blot analysis
Total cellular RNA was extracted from 293FT cells (from two

wells of a six-well tissue culture plate) 48 hours following

transfection (240 ng pL2G, 5 nM siRNA, 200 ng pSEAP, and sufficient

pUC19 plasmid to give 3.2 mg nucleic acid per well) with RNAzol

(Cinna/Biotecx, Houston, TX). The RNA (10 mg of each) was

fractionated on a 1.2% agarose formaldehyde denaturing gel,

transferred to a membrane, and sequentially hybridized to
32P-radiolabeled probes specific to fLuc, SEAP, or EF1A and

visualized/quantitated by phosphorimager as previously described

(Wang et al., 2005).

Mice
Six-week old female Balb/c mice were obtained from the

animal facility of Stanford University. Animals were treated

according to the Guidelines for Animal Care of both NIH and

Stanford University.

Mouse footpad injections and in vivo imaging
Mouse footpad injections were performed as described (Hengge

et al., 1996; Zhu et al., 2001). In a typical experiment, a total volume

of 50 ml phosphate-buffered saline containing 20 mg siRNA inhibitor

and 2 mg of pL2G plasmid was injected into the mouse footpad. All

animals were imaged 10minutes after IP injection of luciferin (100 ml
of 30mg/ml luciferin; 150mg/kg body weight; Contag and Bach-

mann, 2002). Mice were sedated using isoflurane and live

anesthetized mice were imaged using the IVIS200 imaging system

(Xenogen Corp., Alameda, CA). The resulting light emission was

quantitated using LivingImage software (Xenogen), written as an

overlay on Igor image analysis software (WaveMetrics Inc., Lake

Oswego, OR). Raw values are reported as photons per second and

standard errors of the mean for each group (n¼ 3 animals) are

shown.

b-Galactosidase staining and microtome sectioning. b-gal
activity was assayed in intact mice footpads. Thirty-six hours

following intradermal footpad injection of b-gal expression plasmid
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(pCMVSport b-gal; Invitrogen), mice were killed by CO2 asphyxiation

and the paw was surgically removed. After fixation in 0.5%

paraformaldehyde for 12hours and equilibration in 20% sucrose

overnight, the skin was rinsed three times with phosphate-buffered

saline and incubated overnight at 371C in phosphate-buffered saline

containing 400mg/ml X-gal substrate (5-bromo-4-chloro-3-indolyl-b-D-
galactoside), 4mM potassium ferricyanide, 4mM MgCl2, and 0.1%

Nonidet P-40 as previously described (Smeyne et al., 1991). Following

b-gal staining, the skin was embedded in OCT compound (VWR, West

Chester, PA), cut into 10-mm serial sections, and collected on coated

glass slides (VWR). Sections were counterstained with hematoxylin and

eosin (SIGMA) and visualized by microscopy.
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